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The Beginning of Nuclear Physics

• Milestones (The impetus for reaction theory 
frameworks)

• 1.  Discovery of the neutron (Chadwick, 1932)
• 2.  Short range and great strength of nuclear forces 

(Wigner,1933)
• 3.  Slow neutron resonances (Fermi, 1935)
• 4.  The Compound Nucleus (Bohr, 1935)
• 5.  The Breit-Wigner Formula (1936)



Slow neutron resonances in Th232



The Compound Nucleus  Be8



The Breit-Wigner Formula
(Based on the analogy of the dispersion of light)

σcc’ =  (π / k2 ) I Γλc
1/2Γλc’

1/2 / {(Ελ − Ε) - (ι/2)Γλ} I2

Γλc =  2 Pc γλc
2 .

Γλ =  Σc Γλc .



Cross sections and the Collision Matrix

• In the many-channel space external to the Compound 
Nucleus, nuclear reaction measurements are given in 
terms of cross sections, σcc’ , but the physics is 
described in terms of the collision matrix, Ucc’.

• The connection between the cross sections and the 
collision matrix is important but the discussion of the 
physics of resonance reactions focuses on the collision 
matrix and, in turn, on the matrices (such as the R-
Matrix) used to provide frameworks for the description of 
resonances which occur inside the Compound Nucleus.   



s-wave neutron resonances in a 
square well potential

• Neutron resonances in a square well 
potential (depth = 51 MeV, radius = 

• 6.715 fm, corresponding ~ to A = 155).

• There is a “resonance” inside the well 
when the derivative of the wave 
function at the radius is zero

• Thus the “natural”  boundary
• condition number is b = 0.

• The energies and wave functions of 
the six lowest “resonances” are 
shown.

• Here, at zero energy, only the 4th

resonance matters 



The resonances for s-wave 
neutrons in the square well

In this one-dimensional problem all the matrices are simply functions.  
From the region external to the square well we get the cross section in 
terms of the collision function, U, or the phase shift, δ.

• σ  =  (π / k2 ) sin2 δ  =  ( π / k2 )I 1 – U I 2.
• With
• δ  =  tan-1 [ (ka / Ka) tan Ka]  - ka

• If we choose to characterize the square well by its resonances, 
defined by its radius, a, and by the boundary condition,                     
b = a (dXλ /dr)at r=a / Xλ , then we get the resonances which we have 
just seen



The R-function and the 
Resonances of the square well

• If we expand the actual internal wave function in terms of the resonances 
we have defined we find that at the square well radius, a, the inverse of the 
wave function’s logarithmic derivative is given by:

• R  = φ(a) / φ’(a) = Σ γλ
2 /( Eλ – E )

• .where  γλ
2 = (h/2π)2 /2ma2 is called the reduced width.  R is, in effect, the 

Fourier Series expansion of the internal part of the phase shift, that is, of 
• (1/Ka) tan Ka.

• Using this to equate the external and internal logarithmic derivatives at the 
nuclear radius we get the collision function:

• U =  O-1 (1– RL)-1 (1– RL*)O* = e-2ika (U 1-ikaR)-1 (1+ikaR)

• Where O is an outgoing wave (eika) evaluated at the well radius and L is the 
logarthmic derivative of O



Exhibiting a square well resonance
Having expanded the internal part of the square well wave function by a 
Fourier Series of the resonances it is now easy to exhibit a single 
resonance by approximating the R-function with only one term (that for 
the fourth resonance of the Fourier Series).  With this approximation we 
have  R =  [(h/2π)2 /ma2] / (E4 – E) and then we get:

σ  =  (π/k2) I 2 sin ka eika - Γλ / (E4 – E  - i Γλ / 2 I2.

with   Γλ =  2P γλ
2 =  2ka (h/2π)2 / ma2.

Here we have the familiar Breit-Wigner formula for s-wave neutrons 
and a square well.  On the next slide we show this resonance for fixed 
neutron energy (50 keV) as a function of well radius, a, or atomic 
number A



s-wave neutron resonance in a square well
(shown for various boundary conditions for the resonances)



Generalizing the one-dimensional square well 
case to the many-dimensional Compound Nucleus

• Keeping the idea of connecting the cross section to the 
collision function (or matrix) in the external region and, in 
turn, connecting the collision matrix to the R-Matrix in the 
internal region of the Compound Nucleus, we now add 
all of the geometrical complications arising from having 
many channels (defined by spin, orbital angular 
momentum and the various reaction pairs) as well as the 
complications from the external Coulomb field, we 
achieve connections between σ and U and between U 
and R which are very similar to those of the square-well 
case.

• This is what Wigner and others did to achieve the 
• R-Matrix framework.



Analogues of the Compound Nucleus
An electric circuit junction and a wave guide.

(from E.P. Wigner, American Journal of Physics, Vol. 17 page 99, 1949)



The cross sections and the 
collision matrix

• The general differential cross section is connected to the 
collision matrix components by the products of many 
Clebsch-Gordan coefficients
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The Collision matrix in terms of the R-Matrix
(for the few-channel, many-level framework)

• We use the external Coulomb wave functions, Fl and Gl, and their 
derivatives, evaluated at the channel radius, and the boundary 
conditions, bl, for each channel to define:

• the logarithmic derivative: Ll = (O’l / Ol) – bl =  (Sl - bl)  +  Pl. 
• the penetration factor: P  =  (kr) / (Fl

2 +  Gl
2)

• the shift factor: Sl =  (Fl’ Fl + Gl’ G) / (Fl
2 + Gl

2)
• the phase shift: Ol

-1 Il =  exp (2i Ωl )     with    Ωl =  ωl − tan (Fl / Gl)
• where ωl is the Coulomb phase-shift and tan (Fl / Gl ) the hard-

sphere phase-shift
• with these terms we get the collision matrix in terms of the R-Matrix:

1/2 -1/2 -1
cc c c c c c cc cc c c cU  = exp (i + ) P  P  [1 - RL]  (  - R  L )δ ∗

′ ′ ′ ′′ ′′ ′′ ′′ ′ ′Ω Ω Σ



The Few-Level, Multi-Channel
R-Matrix Framework

1/2 1/2
c c= ( 2 P  )   cλ λγΓ

1/2 1/2
cc c c cc cU  = exp[ i (  + ) ] {  + i   A } cλλ λ λ λλδ′ ′ ′ ′ ′ ′ ′Ω Ω Σ Γ Γ

-1( A )  = (E - E)  +   - (i/2) λλ λ λλ λλ λλδ′ ′ ′ ′Δ Γ

( )c c =  c c cS bλλ λ λγ γ′ ′Δ Σ −

2c c c cPλλ λ λγ γ′ ′Γ = Σ



The Inverse of the Level Matrix
(Diagonal terms which are Breit-Wigner Amplitudes and off-

diagonal terms which are “cross talk” between levels)



The “Cross-Talk” terms of the Level 
Matrix

• Removing the level-shift terms by proper choice of the boundary condition 
numbers, the off-diagonal or “cross-talk” terms of the reciprocal of the level 
matrix are:

• - (i/2) Σc Γλc
1/2 Γλ’c

1/2.

� Τhis is a scalar product in channel space and can therefore be written as:

� − (i/2)  Γλ
1/2 Γλ’

1/2 cos ( θλλ’)

• Where Γλ
1/2 and  Γλ’

1/2 are the square roots of total level widths already 
occurring as parameters in the diagonal terms.  Therefore, regardless of the 
number of channels or levels,  a single new parameter, cos (θλλ’ ), is needed 
for each of the cross-talk terms and this parameter has values between -1 
and +1.  Sometimes this parameter is necessary and useful.



The U235 cross sections fitted with 
the level matrix formula (1958)

(Broad levels clearly requiring the “cross-talk” terms)



Comparison of Various 
Reaction Theory Frameworks

• Next we compare various frameworks for the description 
of resonance reactions

• Kapur and Peierls (1938)

• R-Matrix theory (Wigner et al, 1938-1958)

• K-Matrix theories (1960  - )



The Kapur-Peierls Framework
First in the field:  P.L. Kapur and R.E. Peierls, 
Proc. Roy. Soc. (London),A166, 277 (1938)

• Basis:  the boundary condition numbers in each channel are chosen 
to be those of an outgoing wave.  Intuitively a very good idea.

• Great advantage: with this choice of boundary conditions each Lc
vanishes identically  and therefore  the matrix inversion disappears 
because  1 – LR  =  1.  L* however does not vanish and the collision 
matrix becomes the square of the sum of Breit-Wigner amplitudes

• Disadvantages:
• 1)  The boundary conditions are strongly energy dependent:  bc = Sc

+ i Pc.  This is a crushing problem.
• 2)  The boundary condition is complex.  Therefore we don’t have a 

Hermitian set of states and there are questions about completeness 
and many other things.



R-Matrix frameworks
• References for the development:
• The work by Wigner and his students was begun before WWII but was 

interrupted by the war. Some of the milestones were:
• 1.  L.Eisenbud and E.P. Wigner, Proc. Natl. Acad. Sci. U.S.,27, 281 (1941).
• 2.  E.P. Wigner, Phys. Rev. 70, 15 (1946) & 70, 606 (1946)
• 3.  E.P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).
• 4.  T. Teichmann and E.P. Wigner, Phys. Rev. 87, 123.
• 5.  R.G. Thomas, Phys. Rev. 97, 234 (1955)
• 6.  C. Bloch, Nuclear Phys. 4, 503 (1957).
• 7.  A.M. Lane and R.G. Thomas, Revs. Modern Phys. 30, 257 (1958)
• 8   EWV review papers in 1959, 1962 & 1968.
• 9.  EWV Lecture notes at JINA (2005)



Advantages &Disadvantages of 
R-Matrix Theory

• Disadvantages:
• 1.  For each approximation formula it is necessary to have matrix 

inversion.
• 2.  The parameters, the channel radii, ac, and the boundary 

condition numbers, bc, appear arbitrary.
• 3.  The difficulty of accommodating direct reactions

• Advantages:
• 1.  The channel radii and boundary conditions have “natural” 

definitions which make the framework physically appealing.
• 2.  The reduced widths have a very appealing connection to nuclear 

spectroscopy and the nuclear mean field.  All aspects of the 
framework are intuitively appealing.



The Choice of Channel Radii and Boundary Conditions

• In the early days of R-Matrix theory there was much confusion about 
the apparent arbitrariness of the choice of channel radii and 
boundary condition numbers. 

• With the advent of the optical model and the nuclear mean field 
(Saxon-Woods potential wells), in the 1950’s, “natural” choices of 
these parameters emerged.

• “NATURAL” CHOICES:
• The “natural” choice of boundary condition number for each channel 

is to set it equal to the shift function at some point in the energy 
interval of the measurement.  This works because the shift function 
generally varies slowly with energy.

• The “natural” choice of channel radii, for a Saxon-Woods mean field, 
is to choose it slightly larger (by about a fermi) than the mid-point 
radius.



Boundary Condition Numbers

• Even though the “natural” choice of boundary condition numbers 
makes the level shift quite small in most cases, one should not omit 
the shift functions from the fit to data, particularly for broad levels. (In 
effect, the energy dependence of the level shift renormalizes the 
level widths)

• There is only one case  - bound s-wave neutron levels  - where the 
shift function varies unreasonably rapidly with energy.  Such levels, 
of course, correspond to “halo” states which require special 
treatment.  Here the rapid energy variation of the shift function is a 
warning sign to be careful about the resonance analysis

• In general, the constancy of the shift function makes the R-matrix 
framework valid and useful for fitting resonance reactions and 
makes the fits relatively insensitive to the choice of boundary 
condition numbers.



Channel  Radii
• The “natural” choice of the channel radius, for a Saxon-

Woods mean field, is to make it slightly larger (by about 
a fm) than the mid-point radius:  this makes the 
connection to nuclear spectroscopy simpler.

• A different choice of the channel radius impacts the 
value of the single-particle width in the one-level 
approximation, although in almost all cases the fit to data 
is remarkably insensitive to the choice of channel radii.  
Choosing a channel radius very different from the mid-
point radius is physically unappealing.



Spectroscopic Factors
• For the approximations within the R-Matrix framework the partial 

level widths have the following very appealing form:
• Γλc =  2 Pc γλc

2 =  Sλc Γc .

• Here Γc is the single-particle width of the mean field:  for a square 
well it is  (h / 2π)2 / ma2 , but for a diffuse-edge well it increases by a 
reflection factor, with the surface thickness.

• Sλc is the spectroscopic factor  - with a maximum value of unity  -
which gives the fraction of the compound state, λ, corresponding to 
the component single-particle state.

• Useful tip: when fitting data, especially alpha particle scattering, one 
should include nearby states with huge spectroscopic factors.  



Direct  Reactions
• The R-Matrix framework is, of course, complete and 

should be able to describe everything, including both 
resonance reactions and direct reactions.  However, 
when we make approximations we can throw away some 
of the physics.  As Claude Bloch first showed, when we 
throw away the very distant levels we throw away the 
direct reactions.  

• The direct reactions can simply be added in to any 
description of resonances with R-Matrix approximations

• Similarly, the hard-sphere phase shifts can be replaced 
by phase shifts of the corresponding mean field



K-Matrix Frameworks
• In the early 1960’s Rosenfeld became unreasonably excited about 

the parameters of R-Matrix theory  - the channel radii and boundary 
conditions  - which he regarded as unreasonably artificial:  on the 
contrary, they are one of the strengths of R-Matrix theory.

• Following the fashion of the time   - which for particle physics 
focused on the analytic properties of the S-Matrix – he and Humblet
devised the K-Matrix framework.

• In particle physics this approach has long been abandoned and 
deserves to be abandoned for resonance reactions:  it involves all 
kinds of physically unattractive states.  The compound nucleus really 
is a resonator deserving of an R-Matrix framework.



CONCLUSIONS
• The R-Matrix framework has turned out to 

be very resilient because it is so strongly 
rooted in the physics of the nucleus:

• The nucleus is really a “resonant” cavity 
and the parameters of the R-Matrix theory 
describe the properties of the Compound 
Nucleus.
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